7,729 research outputs found

    SU(3)X SU(2)XU(1) Chiral Models from Intersecting D4-/D5-branes

    Full text link
    We clarify RR tadpole cancellation conditions for intersecting D4-/D5-branes. We find all of the D4-brane models which have D=4 three-generation chiral fermions with the SU(3)XSU(2)XU(1)^n symmetries. For the D5-brane case, we present a solution to the conditions which gives exactly the matter contents of standard model with U(1) anomalies.Comment: 6 pages, submitted to Progress Letter

    Transient dynamics and structure of optimal excitations in thermocapillary spreading: Precursor film model

    Get PDF
    Linearized modal stability theory has shown that the thermocapillary spreading of a liquid film on a homogeneous, completely wetting surface can produce a rivulet instability at the advancing front due to formation of a capillary ridge. Mechanisms that drain fluid from the ridge can stabilize the flow against rivulet formation. Numerical predictions from this analysis for the film speed, shape, and most unstable wavelength agree remarkably well with experimental measurements even though the linearized disturbance operator is non-normal, which allows transient growth of perturbations. Our previous studies using a more generalized nonmodal stability analysis for contact lines models describing partially wetting liquids (i.e., either boundary slip or van der Waals interactions) have shown that the transient amplification is not sufficient to affect the predictions of eigenvalue analysis. In this work we complete examination of the various contact line models by studying the influence of an infinite and flat precursor film, which is the most commonly employed contact line model for completely wetting films. The maximum amplification of arbitrary disturbances and the optimal initial excitations that elicit the maximum growth over a specified time, which quantify the sensitivity of the film to perturbations of different structure, are presented. While the modal results for the three different contact line models are essentially indistinguishable, the transient dynamics and maximum possible amplification differ, which suggests different transient dynamics for completely and partially wetting films. These differences are explained by the structure of the computed optimal excitations, which provides further basis for understanding the agreement between experiment and predictions of conventional modal analysis

    Phonon emission and arrival times of electrons from a single-electron source

    Get PDF
    In recent charge-pump experiments, single electrons are injected into quantum Hall edge channels at energies significantly above the Fermi level. We consider here the relaxation of these hot edge-channel electrons through longitudinal-optical-phonon emission. Our results show that the probability for an electron in the outermost edge channel to emit one or more phonons en route to a detector some microns distant along the edge channel suffers a double-exponential suppression with increasing magnetic field. This explains recent experimental observations. We also describe how the shape of the arrival-time distribution of electrons at the detector reflects the velocities of the electronic states post phonon emission. We show how this can give rise to pronounced oscillations in the arrival-time-distribution width as a function of magnetic field or electron energy

    Picosecond coherent electron motion in a silicon single-electron source

    Full text link
    Understanding ultrafast coherent electron dynamics is necessary for application of a single-electron source to metrological standards, quantum information processing, including electron quantum optics, and quantum sensing. While the dynamics of an electron emitted from the source has been extensively studied, there is as yet no study of the dynamics inside the source. This is because the speed of the internal dynamics is typically higher than 100 GHz, beyond state-of-the-art experimental bandwidth. Here, we theoretically and experimentally demonstrate that the internal dynamics in a silicon singleelectron source comprising a dynamic quantum dot can be detected, utilising a resonant level with which the dynamics is read out as gate-dependent current oscillations. Our experimental observation and simulation with realistic parameters show that an electron wave packet spatially oscillates quantum-coherently at \sim 200 GHz inside the source. Our results will lead to a protocol for detecting such fast dynamics in a cavity and offer a means of engineering electron wave packets. This could allow high-accuracy current sources, high-resolution and high-speed electromagnetic-field sensing, and high-fidelity initialisation of flying qubits

    Galactic-Center Hyper-Shell Model for the North Polar Spurs

    Get PDF
    The bipolar-hyper shell (BHS) model for the North Polar Spurs (NPS-E, -W, and Loop I) and counter southern spurs (SPS-E and -W) is revisited based on numerical hydrodynamical simulations. Propagations of shock waves produced by energetic explosive events in the Galactic Center are examined. Distributions of soft X-ray brightness on the sky at 0.25, 0.7, and 1.5 keV in a +/-50 deg x +/-50 deg region around the Galactic Center are modeled by thermal emission from high-temperature plasma in the shock-compressed shell considering shadowing by the interstellar HI and H2 gases. The result is compared with the ROSAT wide field X-ray images in R2, 4 and 6 bands. The NPS and southern spurs are well reproduced by the simulation as shadowed dumbbell-shaped shock waves. We discuss the origin and energetics of the event in relation to the starburst and/or AGN activities in the Galactic Center. [ High resolution pdf is available at http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/2016bhs/ ]Comment: 13 pages, 20 figures; To appear in MNRA

    ALMA polarimetric studies of rotating jet/disk systems

    Get PDF
    We have recently obtained polarimetric data at mm wavelengths with ALMA for the young systems DG Tau and CW Tau, for which the rotation properties of jet and disk have been investigated in previous high angular resolution studies. The motivation was to test the models of magneto-centrifugal launch of jets via the determination of the magnetic configuration at the disk surface. The analysis of these data, however, reveals that self-scattering of dust thermal radiation dominates the polarization pattern. It is shown that even if no information on the magnetic field can be derived in this case, the polarization data are a powerful tool for the diagnostics of the properties and the evolution of dust in protoplanetary disks.Comment: 9 pages, 3 figures, to appear in "Jet Simulations, Experiments and Theory. Ten years after JETSET, what is next ?", C. Sauty ed., Springer Natur
    corecore